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Base-catalyzed cyclization of monofluorodienynes: a new route
to substituted fluorobenzene derivatives

Yi Wang and Donald J. Burton*

Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA

Received 18 October 2006; accepted 20 October 2006
Abstract—The Sonogashira reaction of 1-bromo-1-fluoro-4-phenyl-1,3-butadienes and terminal alkynes, followed by cyclization in
the presence of DABCO in refluxing NMP affords fluorinated benzene derivatives site-specifically in good yields.
� 2006 Elsevier Ltd. All rights reserved.
H

R

X

F

R

X

NMP, reflux

DABCO

F

Scheme 1. Cyclization of 1-aryl-2-fluoroenynes.
Due to the unique properties of fluorine, organofluorine
compounds have attracted increasing interest in the
areas of polymer chemistry, pharmaceutical chemistry,
and agricultural chemistry.1,2 Fluorinated aromatic
compounds have been of interest to us because of the
growing demand of these compounds as pharmaceutical
and agricultural agents and the lack of efficient synthetic
methodologies.3–5

There are limited methodologies for the preparation of
mono-fluorinated aromatic compounds. The Balz–
Schiemann reaction6,7 suffers from hazardous starting
diazonium salts, intolerance of certain functional groups
and tarry byproducts. Other methods utilizing electro-
philic fluorination of aromatic compounds often give
regioisomeric mixtures.8–12 Sanford and co-workers re-
cently reported a palladium-catalyzed fluorination of
C–H bonds under microwave irradiation.13 However,
the presence of a pyridine or quinoline group as the
directing group was required in the substrate.

Recently, we reported a site-specific preparation of fluo-
rinated naphthalene and phenanthrene derivatives via a
novel base-catalyzed cyclization of (E)-monofluoroeny-
nes14,15 (Scheme 1).

In this work, we demonstrated that 1-aryl-2-fluoroeny-
nes afforded the cyclized products via attack on the p
system of the substituted aryl ring. If cyclization could
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occur on a simple olefinic p system of dienynes, a new
methodology for the preparation of fluorobenzene
derivatives could be achieved. The only cyclizations of
dienynes were reported by Hopf16 and Zimmer-
mann.17,18 Hopf and Musso obtained �50% of benzene
via flow pyrolysis of cis-1,3-hexadien-5-yne at 274 �C. In
addition to benzene, ca. 20% of a high-boiling mixture
containing at least 15 components was isolated.16 Zim-
mermann reported a similar work with various 1,3-hexa-
dien-5-ynes under different thermal conditions.18 His
results indicated that three types of radical mechanisms
can account for the complex reaction behavior (depend-
ing on distinct temperature ranges). Thus, although
Hopf and Zimmermann documented the first reports
of cyclization of dienynes to form aromatic hydrocar-
bons, the methodology was not selective for any one
aromatic derivative, achieved only under high tempera-
ture conditions, and not an overall useful preparative
procedure. Since our base-catalyzed cyclization process
is mechanistically different than the previous reported
radical cyclization work,18 we were thus encouraged to
attempt our base-catalyzed cyclization with a simple ole-
finic p system as the terminus for cyclization. We chose
1-phenyl-1,3-dien-5-ynes as the model system to demon-
strate the utility of the base-catalyzed route to fluoro-
benzene derivatives.
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Table 1. Cyclization of fluorinated dienynes
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Entry R Time (h) Product Isolated yield a,b (%) (two steps)

1 n-C4H9 6.5 4a 72
2 n-C5H11 5.5 4b 71
3 PhCH2CH2 5.5 4c 85

a Based on the (Z,E)-1-bromo-1-fluoro-4-phenyl-1,3-butadiene 2.
b All of the products gave satisfactory 1H, 19F, 13C NMR, and HRMS data.
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Scheme 2. Proposed mechanism for the formation of 4a.
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trans-Cinnamaldehyde 1 was employed as the starting
material, which reacted with CFBr3 and 2 equiv Ph3P
in THF19 to afford a mixture of (E,E)- and (Z,E)-1-bro-
mo-1-fluoro-4-phenyl-1,3-butadienes 2 in a 49% yield
((E,E)/(Z,E) = 43:57).20 The ratio of the two isomers
was determined by integrations of the vinyl fluorine in
the 19F NMR spectrum of 2. The Sonogashira reaction21

of the mixture of 2 with terminal alkynes in Et3N gave
the corresponding dienynes 3, which were utilized
directly in the next step.

The reaction of 3 and 6 equiv of DABCO in refluxing
NMP yielded 2-substituted-4-fluorobiphenyls 4a–c in
good yields.22 Note that the yields were calculated from
two steps and were based on the (Z,E)-1-bromo-1-
fluoro-1,3-butadiene in the mixture 2. These results
are summarized in Table 1.

Similar to the mechanism proposed in our previous re-
port,14 the reaction pathway is illustrated in Scheme 2.
First, the base catalyzes the isomerization of the dienyne
to the allene, which undergoes a 6p cycloaddition to
form a cyclized intermediate. The final product could
be formed consequently due to the favorable formation
of the aromatic ring.

In conclusion, we have demonstrated that a simple
olefinic p system can serve as the terminus of attack
in the cyclization of 1-subsituted-1,3-dien-5-ynes and
can provide a new synthetic entry to substituted
fluorinated benzene derivatives. This site-specific
cyclization gives only the aryl derivatives in good
yields and it can be achieved under relatively mild
reaction conditions. Our work continues to explore
the overall scope of this novel base-catalyzed cycliza-
tion process.
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